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Abstract--This paper examines the geological implications of an analysis of constraints on the orientation of fold 
axes in orthotropic materials. We argue that rocks with penetrative linear and planar shape fabrics may have 
orthotropic (anisotropic) properties during deformation. Two forms of anisotropy (rheological and structural) 
could be potentially important in the control of fold axial directions. We discuss a model of deformation of rocks 
with linear/planar fabrics where, in a single deformation event, major fold axes need not be parallel to minor fold axes 
and neither need be perpendicular to the principal compressive stress direction. Geological and model examples of 
anistropic control on fold axial directions are given. 

INTRODUCTION 

A STRIKING feature of many orogenic belts is that later folds 
are often symmetrically orientated with respect to earlier 
formed fabrics. Early shape fabrics in many areas have 
linear elements and later folds have axes parallel to them. 

For example, at Ben Hutig, Sutherland, Scotland, axes 
of crenulation hinges are parallel to quartz rods (Wilson 
1953). Late fold hinges in the deformed conglomerates at 
Bygdin, Norway and Lebendun, Switzerland are parallel 
to the long axes of deformed pebbles (Hossack 1968, Aleffi 
pers. comm. 1980). Also, successive phases of folding in 
many orogenic zones are frequently coaxial. 

One obvious interpretation of this symmetry is that the 
principal axes of stress and strain during the deformation 
history remain constant in direction but change in relative 
magnitude (Talbot 1975). Alternatively, the possibility 
exists that the early tectonite fabric exerts an active 
anisotropic control on later deformation and so controls 
the attitude of the later folds (e.g., Flinn 1962, pp. 
426-427). 

This paper investigates the latter hypothesis and further 
examines the geological implications of an analysis of 
constraints on the orientation of fold axes in orthotropic 
materials {Cobbold & Watkinson 1981). We discuss a 
model of deformation of rocks with linear/planar fabrics 
in order to emphasize the effect of scale. In a single 
deformation event, major fold axes need not be parallel to 
minor fold axes and neither need be perpendicular to the 
principal compressive stress direction. Geological and 
model examples of anisotropic control on fold axial 
directions are given. 

RELATIONSHIP BETWEEN FABRIC AND 
ANISTROPY 

For a statistically homogeneous rock (Paterson & 
Weiss 1961 ), the rheological behaviour can be expressed 

in terms of bulk or averaged properties. Well-foliated 
rocks with planar tectonite fabrics exhibit fold structures 
such as kinks and chevron folds that have been in- 
terpreted in terms of theories of deformation of a homo- 
geneous anisotropic medium (Cobbold et al. 1971). From 
comparison of natural structures with theoretical work 
(Bayly 1964, Biot, 1965, Cobbold 1976), model experi- 
ments (Bayly 1969, Cobbold et al. 1971, Latham 1979) 
and experimental rock deformation (Paterson & Weiss 
1966), it appears that rocks with planar fabrics have 
potentially anisotropic rheological properties. 

Therefore, it seems likely that rocks with linear/planar 
fabrics will also possess a linear element of rheological 
anisotropy which will be another important component 
in determining mechanical behaviour (Watkinson & 
Cobbold 1973). Certainly a linear component exists in the 
elastic properties of metamorphic rocks with tectonite LS 
or L fabrics (Johnson & Wenk 1974). 

Examples of elements which make up a linear/planar 
fabric are: 
(A) microfabrics - acicular (e.g., amphiboles) and platy 

(e.g., micas) minerals; 
(B) deformed inclusions such as pebbles, fossils, and 

oolites; 
(C) structures derived from layers, such as pinch and 

swell axes, boudin axes and fold hinges and 
(D) intersecting foliations or "s"-surfaces such as in- 

tersecting shear zones, bedding/cleavage intersection 
or cleavage/cleavage intersections. These may impart 
a linear element of anisotropy. 

Depending on conditions, for example, of temperature, 
differential stress and, therefore, deformation mechanism, 
any one of these elements may be the predominating 
contributor towards the rheological anisotropy of the 
rock. Following Neumanns' principle (Paterson & Weiss 
1961 ) we expect the symmetry axes of rheology to coincide 
with the symmetry axes of the distribution of structural 
elements. 
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R H E O L O G I C A L  AND STRUCTURAL 
ANISOTROPY 

For infinitesimal deformations elastic and linear vis- 
cous behaviours are formally analagous. Although most 
rocks probably deform according to more complex laws 
we assume that the linear models are sufficient to illustrate 
the mechanical principles involved. 

If rock with a linear/planar fabric has orthotropic 
properties, it will have rheotogical properties that are 
symmetric with respect to three orthogonal planes (Biot 
1965, p. 821. For a specially orthotropic material, with 
linear elastic behaviour, nine constants are required to 
define the relationship between stress and strain: 

e l l  ~ S1111 0"11 -~- S l 1 2 2  0"22 ~- S1133  0"33, 

e 2 2  = S2211 {711 + s 2 2 2 2  0"22 "q- S2233  0"33, 

e 3 3  : s3311  0"11 + s 3 3 2 2  0"22 + S3333  0"33, (1) 
el2 = 2Si212 O"12, 

e 2 3  = 2 s 2 3 2 3  0-2~, 

e l 3  = 2 s 1 3 1 3  o 1 ~ ,  

(Cobbold & Watkinson, eq. 3(a)-(f), 1981). 

where the Sijkl a r e  constants and components of an elastic 
compliance tensor. 

When such a material is deformed the axes of strain 
and, therefore, the potential fold axes need not be parallel 
to the axes of stress. For example, for cylindrical bending 
of an orthotropic plate, where compression is applied 
parallel to the layer anistropy within which there is a 
linear anisotropy, the relationship between principal 
directions of stress, 7, and strain, fl, is given by : 

tan 2~. = sin 2ill (A cos 2 f l - B  sin z fl), (2) 

tCobbold & Watkinson, eq. 14, 1981). 

where: 

A = E 1 (1 -- v2)/2G(1 - VlVz) , 

B =  E2(1 -- vl)/2G(1 -- VlVz) , 

with Young's modulus E, Poisson's ratio v, and shear 
modulus G. In terms of the constants in equation (1): 

s1111 = l / E 1  

S2222 = 1/E 2 

$1 122 = - -  vz/E2 

S2211 = - -  Vl/E 1 

s1,12 = 1/4G. 

These equations describe the rheological response of the 
orthotropic material. 

There is, however, another form of anisotropic be- 
haviour which may have a significant control on fold axis 
directions in deformed orthotropic rocks. To demon- 
strate, let us consider the simple first order bending 
equations for an elastic plate. 

For small slopes of the neutral plane (<  20°), the 
bending moment, M of an elastic plate is given by: 

E1 d2v 
M := - - - -  

1 - v 2 " dx 2 

{e.g., Johnson 1970, p. 217) 

where E is Young's elastic modulus, v Poisson's ratio, I the 
moment of inertia of the cross-section of a plate with 
respect to its neutral plane, v the deflection normal to the 
coordinate axis x. For a unit width, 

t 3 
= . . . . .  

12' 

where t is the thickness of the plate (Fig. la). 
The bending moment is dependent both on the elastic 

modulus, E, and the moment of inertia, I of the cross- 
section. If the plate is isotropic, the modulus E will be of 
equal value in all directions. However, for an orthotropic 
plate, the coefficients of elastic compliance will vary in the 
plane of the plate, resulting in the rheological anisotropy. 
For example, for a rotation ~b within the plane of the plate, 
the principal elastic compliance, s 1111, will vary (Fig. lb) 
by: 

sRt111 = silt1 cos4~b + (2 st122 
+ 4 s1212)c0s2 ~b sin2 q~ + $2222 sin4~b (3) 

or, in terms of Young's modulus E. Poisson's ratio v and 
shear modulus G, as follows: 

1 l 
S l l l l  El'  S2222  , 

S1122  == - -  F 2 / E  2 = S2211 = - -  Y1/E1, 
1 

S1212  == ~ .  

Then, 

ER = E,/cos4~b + (Et - 2v,)sin2~b cos2 $ 

+ ~2 sin4 q5 (4) 

(Lekhnitskii 1968, p. 47). 

Therefore, depending on the relative values of E~, etc. 
there will be a marked anisotropy of bending or flexural 
rigidity within the plane of the plate. 

The moment of inertia I could also vary. This is 
primarily a function of the thickness and shape of the plate 
(I = t3/12). For example, a pinch-and-swell vein will have 
a variable thickness, t, and, therefore, a variable moment 
of inertia leading to what is termed by engineers a 
structural anisotropy. A corrugated or folded vein will 
also have a variable bending resistance due to structural 
anistropy (Troitsky 1976) (Appendix). This form of 
anisotropy will occur even if the material is rheologically 
isotropic. A good example of the importance of the 
control of a structural anisotropy is one of the model 
experiments carried out by Ghosh & Ramberg (1968, 
plate IV). A set of folds formed during one deformation were 
re-deformed, the compression direction for the second 
deformation being at an angle of about thirty degrees to 
that for the first deformation. No new system of folds 
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Fig. la. Bending of an elastic plate, thickness t ,  by a bending moment M. The deflection, v. is normal to the coordinate axis x. 

Fig. lb. sRt~l~ is the modulus in the direction at an angle ~b to the principal modulus st~tl within the plane of the plate. 

developed during the second deformation. Instead, the 
earlier folds were simply tightened and rotated. The 
structural anisotropy formed by the first deformation was 
suffÉcient to control the second. A good geological 
example is provided by Goguel (1962, fig. 123, p. 168) who 
states "In a slightly folded region a deformation by 
accentuation of old folds is quite easy, but the develop- 
ment of folds of different directions is very difficult. 
Consequently, there will be a tendency to folding along 
old fo lds . . . ' .  He gives an example of the reactivation of 
early folding in the Baronnies region in the sub-alpine 
folds of Provence, S. W. France. 

In general, the bulk anisotropic properties of the rock 
will be made up of both structural and rheological 
anisotropic elements. A complex pattern of fold axial 
directions could develop in deformed rocks with linear/ 
planar fabrics as a result of the control of these two forms of 
anisotropy (rheological and structural). To demonstrate 
the potential complexity, we will discuss a hypothetical 
model which is based on several field observations. 

An orthotropic system (Fig. 2a) is folded by a later 
deformation, the linear element of the orthotropic system 
being at an angle 4' to the principal compressive stress. 
The direction of axes of folds forming on the scale of the 
whole system is controlled by the direction of the principal 
strain axes, related to stress direction by an equation such 
as (2). Within the system there are isolated, single-layer 
pinch-and-swell veins with an isotropic microfabric which 
are folded by this later deformation. The minor scale folds 
are controlled principally by the structural anistropy of 
the pinch-and-swell veins and form nearly parallel to their 
axes (Fig. 2b). Thus, in the hypothetical model the minor 
fold axes form at an angle to the major fold axes and 
neither are at ninety degrees to the principal compressive 
stress. 

Figure 3 shows a model experiment where minor folds 
formed at an angle to the major fold, both fold sets 
forming in the same deformation event. A single layer of 
competent modelling clay was embedded in a softer clay 
matrix and compressed in plane strain in a deformation 
box. The competent layer was initially planar and rein- 
forced by wax rods at an angle of 65 ° to the principal 
direction of shortening. The major folds axis, F, formed 

perpendicular to the maximum shortening direction (in 
this model there was no rheological anistropy), whereas 
the minor folds, f formed almost parallel to the rods. 
Because of the basic strain incompatibility caused by 
different folding directions forming at the same time, 
shearing as local d6collement or parallel to the early linear 
elements may arise (Goguel 1962, p. 169, Watkinson in 
preparation). 

GEOLOGICAL EXAMPLE OF ANISOTROPIC 
CONTROL ON FOLD AXIAL DIRECTIONS 

It is a difficult problem to find geological examples 
where it is unambiguously clear that anisotropic control 
has taken place. We have looked for areas where distinctly 
anomalous trends of late fold structures are related to a 
distinct local development of early fabrics. One such 
example occurs in Silurian shales of the Arra Mountains 
(SW Ireland) which are affected by large folds of variable 
plunge. Calcite plates with a fibre growth occur in zones 
along bedding planes, presumably indicating bedding- 
plane slip during the initial stages of folding. It appears 
that as the folds developed further, the flexural slip 
component diminished and further shortening across the 
folds was expressed as crenulations of the calcite layers. 
The crenulation fold axes are grossly parallel to the axes of 
the major folds and to the bedding/cleavage intersection. 
We will call this direction F. 

The angle 4) between F and the fibres varies between 90 ° 
and 12 °. For 30 ° <4)<90 °, the fibres are predominantly 
folded about F; but for 4) <30 '~, wherever the fibres 
appear to be strongly developed (in zones, see Fig. 4), the 
crenulation axes switch parallel to the early fibre direction 
rather than fold the lineation at a low angle to F (12°-30°). 
This example seems convincing because it is only in zones 
where the linear fibres are well developed that the 
crenulation fold axes switch parallel to them. 

CONCLUSIONS 

The analysis of the rheological behaviour of ortho- 
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Fig. 2a. A hypothetical model of a rock with orthotropic properties and with a single-layer pinch and swell vein. The lineation 
is at an angle ~b to the principal compressive stress. 

Fig. 2b. The major folds form at an angle to the lineation and are non-perpendicular to the compressive stress. The minor folds, 
folding the pinch-and-swell structure, are controlled by the structural anisotropy of the pinch-and-swell vein and form almost 

parallel to the pinch and swell axes. 

tropic materials shows clearly that in general the direction 
of strain will not be parallel to the direction of applied 
stress. Potentially then, the direction of fold axes in 
deformed rocks with orthotropic properties will be in- 
fluenced by the anisotropy produced by an early penet- 
rative deformation. Two forms of anisotropy (rheologi- 
cal and structural) could be potentially important  in the 
control of fold axial directions. 

An appreciation of the potential mechanical controls 
would seem to be important  for the problem of correlating 
fold phases from area to area. Indeed the anisotropic 
control of earlier fabrics on later folding may well be the 
mechanical explanation of why later fold phases, as 
observed by, for example, Mukhopadhyay (1965) and 
Tobisch (1967)in the Scottish Caledonides, are so diver- 
gent in axial directions. 

The crenulation folds in the Arra Mountains appear to 
be a vivid example of anisotropic control. In other areas, 
such as the Isle de Groix, Brittany (Quinquis 1980), where 
crenulation folds follow the variable trend of an earlier 
penetrative lineation, anisotropic control would seem to 
be a reasonable explanation of the pattern of deformation. 

Until we have more data on values of ductile anisotropy 
it is difficult to assess the significance of the symmetry of 
deformation observed in many other areas. Certainly, if 
high values of anisotropy exist, the symmetry could well 
be the result of anisotropic control by an early penetrative 
fabric. 
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Fig. 3. Plan and profile view of a layer containing linear rods ~fp at an angle to the major fold axis (F). The minor folds form 
parallel to the rods and contemporaneously with the major fold, but are oblique to the major fold axis F. 
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Fig. 4a. Crenulated calcite plates with a fibre growth. Where the fibre growth is well developed, the crenulation fold axes switch 
parallel to the fibres. Arra Mountains, S. W. Ireland. 

Fig. 4b. Zones of well developed fibre growth between zones where many of the crenulation axes are parallel to the axes of the 
major folds (direction Ft. Arra Mountains, S. W. Ireland. 
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APPENDIX: Structural anisotropy of a corrugated plate 

Troitsky (1968) gives an example of the structural anisotropy of a 
corrugated elastic plate. The plate is unconfined and of isotropic 
material having corrugation in the x direction (Fig. 5). 

For a sinusoidal corrugation of the form 

~x 
y = a s in - - ,  

I 

the approximate formula for the flexural rigidity (D) in the x direction is 

I Et 3 

D~ s 12(1 - v 2 j 

In the z direction, 

D z = EI~ 

for corrugations with a chord length of one semi-wavelength l, arc length 
s, thickness t, Young's modulus E, Poisson's ratio v and I2 is the mean 
moment of inertia in the xz plane per unit length equal to: 

I 08, ] l~=0 .5a2t  1 a 2" 

1 +  2.5 ( 2 l )  

(Troitsky 1976, p. 81). 

z 

Fig. 5. A corrugated plate of thickness t with a chord length of one 
semiwavelength I and arc length s. 


